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A description is given of the application of the &rite element method to solve two- 
dimensional, incompressible turbulent flow problems using a one-equation turbulence model. 
Tbe velocity components and the turbulence kinetic energy are approximated over each 
element by quadratic interpolation functions, while linear interpolation is used for the 
pressure. The length scale of the turbulence is specified algebraically. The problem is then 
reduced to the solution of a set of nonlinear algebraic equations and the method of solu- 
tion is described. Illustrative examples are fully developed turbulent flow in pipes and the 
plane turbulent shear layer. 

Over the past decade considerable effort has been directed at the development of 
computer based numerical models capable of analyzing the large range of turbulent 
flow problems which are of considerable interest in an engineering context. The 
advent of the high-speed computer has meant that it has been possible to implement 
the sophisticated models of turbulence first suggested by Prandtl [l] and Kolmogorov 
[2] and the finite difference method of solution has been extensively applied to solve 
the resulting system of differential equations [3, 41. An alternative technique, using 
finite elements, has, in general, certain advantages over the finite difference method. 
These advantages, which include the ease with which irregular geometries and non- 
uniform meshes can be handled and the imposition of natural boundary conditions, 
have been demonstrated in potential [S] and laminar [6, 71 flow analyses. As yet, 
however, little use has been made of the finite element method in the analysis of 
turbulent flow but it is expected that these advantages will also apply to such problems, 
The authors [8] have successfully used the method utilizing simple turbulence models, 
where the time averaged Navier-Stokes equations are used with a turbulent viscosity 
calculated from an algebraic equation. The present paper describes the utilization 
of the finite element method for the more sophisticated, so-called, one-equation 
model of turbulence. This requires the simultaneous solution of the time-averaged 
Navier-Stokes equations coupled with a differential transport equation for the 
turbulent kinetic energy. The terms representing generation and dissipation of energy 
which appear in the kinetic energy equation have no counterpart in the Navier-Stokes 
equations and require special treatment when the equations are discretized. Mis- 
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handling of these terms can result in the failure to achieve converged solutions to the 
resulting set of nonlinear algebraic equations. 

A convergent solution technique is evolved which is then used to solve fully 
developed turbulent flow in pipes and the problem of the plane turbulent shear layer. 
The results are compared with those obtained experimentally [9] and those obtained 
using the finite difference method [lo]. 

GOVERNING EQUATIONS 

One method of describing two-dimensional, steady-state isothermal incompressible 
turbulent flow, ignoring body forces, in a Cartesian coordinate system (x, y) is to 
utilize the time-averaged Navier-Stokes equations 

together with the continuity equation 

Here U and V are the local time-averaged velocities in the x and y directions, respec- 
tively, u and u are the fluctuational velocity components in these directions, p is the 
fluid density, P is the local averaged pressure and v is the laminar kinematic viscosity. 
The quantities -pii2, pi+ -pE2 are termed the Reynolds stresses and are normally 
replaced by the expressions 

(3) 

where PT is called the turbulent viscosity. 
Equations (l)-(3) form a closed set which can be solved for U, V, and P provided 

that an acceptable turbulent viscosity model can be defined. Prandtl [l] and Kolmo- 
gorov [2] independently proposed the relationship 

VT = /&T/p = lk112 (4) 
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where k is the time-averaged turbulence kinetic energy and 1 is a typical turbulent 
length scale. By suitable manipulation of the Navier-Stokes equations it can be shown 
[ 111 that k satisfies an equation of the form 

Convection Diffusion 

Generation 

+ lkljz [2 (g)’ + 2 (5)” +2gg+(g)‘+(43”] 

Dissipation 

C,,k3i2 
--9 I 

where gk and Co are taken to be constant for fully turbulent flows. In the present 
paper it is assumed that the distribution of the length scale I is given by an algebraic 
expression dependent on the flow under consideration. Equations (l)-(5) then 
describe the one-equation hydrodynamic models of turbulence as defined by Launder 
and Spalding [3]. The solution of these equations is required in a closed region Q 
bounded by a curve F. It will be assumed that at all points of Neither U, V, and k or 
their normal derivatives are specified. 

FINITE ELEMENT FORMULATION 

The region Q is divided into M quadrilateral elements A@ and an extended form of 
the mixed interpolation technique devised by Hood and Taylor [6, 121 is adopted. 
This means that eight-noded quadrilateral elements, with associated shape functions 
NJ, are used to depict variations in velocity, turbulent kinetic energy, turbulent 
viscosity, and length scale, while four-noded linear elements, with associated shape 
functions MJ, are used for the pressure. The element interpolation functions are 
then defined by 

0 = NJIJJ, 

P = NJVJ, 

i = NJkJ 7 

GT = NJvTJ, 

i = NJ& 

P = MJPJ 9 

(6) 
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where the summation convention has been adopted, summation over the appropriate 
number .of indices J in each case being understood. 

Substitution of (6) into Eqs. (I), (2), and (5) and applying the weighted residual 
method, with weighting functions NJ for Eqs. (1) and (5) and weighting functions 
W for eq. (2), produce the standard matrix equation 

AX = B, (7) 

where the nonlinear terms are incorporated in the matrix A and the variables X, 
associated with the Kth node are 

It is apparent that there are many possible forms of constructing the matrix A. 
Previous work on the finite element solution of the laminar Navier-Stokes equations 
[6] has indicated a suitable positioning in the matrix equation for convection and 
diffusion terms. There are many more possibilities for the positioning of the generation 
and dissipation terms appearing in Eq. (5), and tests carried out by the authors 
have indicated that a satisfactory form which does produce converged solutions is 
that in which the submatrix a,, associated with the Kth node which acts on the 
Lth nodal variables is as follows: 

a, = a1 + N’(v + vT1) a2 - NK g v,’ g , 

a -EKaML 
2- 

P ax' 

aN’ aNL a,=-NK---- - 
ay vTI ax 7 

aNL 
a4=MK-, 

ax 

aNL 
as = MK-, 

ay 

aN’ aNL 
a6 = -NK ax vT1 ay , 
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a 7 - NKaML 
P aY’ 

3N’ 
a, = 01~ + NIv~JLY~ - NK - ay vT 

* aNL 
- ay 3 

a, = 

a,, = -NKNJvT’ 2 - ahrr vJ aNL - - 
ay ay 

a11 = % + 
N' + v) (y2 + CDN~)"~ NL, 

and 

a1 = NK NW’ ?I!% + N’v’$) ax 

aNK aNL aNK aNL -- 
OL2 = ax ax f--. 

ay 9 

The right-hand-side vector B contains the prescribed surface gradients of velocity. 
The b,th subvector is given by 

where dP is the elemental length of the appropriate boundary, and 

bl = NK [z)’ I, + +)” 1,] [NIvTJ + v], 

b, = NK [g)” I, + s,” I,] [NJvTJ + v], 

b, = NK [$)” I, + g,” I,][+ + v], 

where the superscript p denotes a prescribed value. On boundaries with prescribed 
values of U, V, or k, the corresponding surface integrals need not be evaluated as the 
nodal values themselves are known and can be applied directly to the matrix, Eq. (7), 
e.g., if a velocity component at node K is known, the corresponding component of 
the Kth momentum equation is deleted and replaced by a 1 on the diagonal and 
the prescribed value inserted in the right-hand-side vector. If the pressure is known 
at the Kth node then the continuity equation at the Kth node is deleted and replaced 
as above. 
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SOLUTION TECHNIQUE 

The first step in the solution technique is the identification of the boundary condi- 
tions to be applied on the velocity, the pressure, and the turbulent kinetic energy. In 
general, the velocity and pressure boundary values result from the definition of the 
problem under consideration, while the boundary condition on the turbulence 
energy is calculated directly from experimental observations on the time-averaged 
velocity fluctuations in flows of similar character. The length scale model to be 
employed is determined by the character of the flow under consideration and several 
standard forms exist for confined [3] and free shear [IO] flows. 

Apart from the continuity equation, the equations to be solved are nonlinear and 
their solution requires, of necessity, some form of iteration. The iteration process 
adopted involved the evaluation of the coefficients of the matrix A in Eq. (7) from 
the values of U, V, and k at the nth iteration and the subsequent solution of equation 
(7) to obtain the (n + 1)st values of CJ, P, V, and k was carried out using the frontal 
solution technique adequately outlined by Hood [ 151. This linearization procedure is 
a natural extension of the work of Hood and Taylor [ 121 for the solution of the Navier- 
Stokes equations. They also demonstrated that the laminar equations can be solved 
by starting the iteration process with initial values of U, P, and V set to zero. However, 
for the current problem it has been found that large computer times are required to 
produce convergence from zero initial conditions, while quicker convergence resulted 
by using, as initial conditions, the velocity field obtained from the analysis of the 
same problem using a simpler turbulence model (i.e., the mixing length hypothesis 
[131)- 

The initial distribution of turbulence kinetic energy is then achieved by using a large 
constant value of the turbulent viscosity in Eq. (4). 

The steps in the above process may be summarized as follows: 

1. Determine boundary conditions to be applied on U, P, V, and k. 

2. Specify a suitable length scale model as a flow dependent function of position. 
3. Estimate the initial velocity distribution. 
4. Calculate the length scale and determine the distribution of k using Eq. (4) 

with a constant turbulent viscosity. 
5. Evaluate the matrix A using current U, V, and k values. 
6. Solve AX = B for new U, P, V, and k values. 
7. Determine the length scale and the distribution of the turbulent viscosity. 
8. Repeat from step 5 until prescribed convergence criteria are satisfied. 

ILLUSTRATIVE EXAMPLES 

The simplest application of the above formulation is to the analysis of fully devel- 
oped turbulent flow in a smooth-walled pipe, of diameter D where both the mean 
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velocity and the level of turbulence is assumed to remain constant at successive 
sections along the pipe length. The region considered and boundary conditions 
applied are shown in Fig. 1. Eight finite elements were used across the pipe section 
arranged with the widths of successive elements decreasing in the ratio 0.35 as the wall 
is approached. The length scale was obtained by use of the expression 

where IN is Nikuradse’s mixing length profile for fully developed pipe flow [3]. This 
formula was modified as suggested by Wolfshtein [14] in the laminar sublayer and in 
the laminar turbulent transition region to account for the proximity of the wall. A 
value of 0.0916 was used for the constant CD as suggested by Launder and Spalding [3]. 

FIG. 1. Region analyzed and boundary conditions for fully developed pipe flow (elements 
not to scale). 

The pressure gradient applied and the laminar viscosity used were adjusted to give a 
Reynolds number, RN , of 5 x 105, to facilitate comparison with the experimental 
results of Laufer [9]. The comparison between experiment and the results of the finite 
element model is given in Fig. 2. Figure 2a shows the variation of U/U,, and klJa/U* 
with distance from the pipe wall, where UC- is the center line velocity and U* is the 
shear velocity. The nondimensional near wall velocity distribution is shown in Fig. 2b 
together with the experimental results and the well-known laws of the wall. It can be 
seen that, within the limitations of the turbulence model, good agreement has been 
obtained with experiment. 

In the interest of efficiency, this formulation has been used in a slightly modified 
form to analyze a particular class of free turbulent shear flow problems where the 
pressure variation is negligible. The particular example presented here is that of the 
co-flowing mixing layer where two semi-infinite streams interact to produce an ever 
widening mixing region. The problem is such that, after an initial transition region, 
the velocities and energy become self-similar in form and the rate of spread of the 
mixing layer becomes constant. The boundary conditions applied and the finite 
element mesh used are shown in Fig. 3, and the model of Launder, et al. [IO], is used 
for the determination of the length scale variation. In this model the usual assumption 
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FIG. 2. Fully developed pipe flow, R N = 5 x 105. (a) Plot of U/UCL and kliB/V*. (b) Non- 
dimensional near wall velocity plot. 
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FIG. 3. Solution domain and prescribed boundary conditions for free shear layer. 
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is made that the length scale at a certain distance downstream is proportional to the 
width of the mixing layer at that point. 

In the self-similar region, the mixing layer is characterized by the spreading param- 
eter, 

u = Axply, 

where dy is the increase in width of the mixing layer over a length dx, and the varia- 
tion of oO/o with different values of the ratio, U.JU, , of the stream velocities is shown 
in Fig. 4. Here (T,, is the spreading parameter for the case U, = 0. For this example 
25 cycles of the iteration scheme were required to produce a 0.5 % convergence in the 
calculated results. These results can be seen to be in excellent agreement with those 
produced by a finite difference approach [lo], which employed forward integration of 
reduced equations in the streamwise direction. 
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FIG. 4. Variation of rate of spread of mixing region with velocity ratio for free shear layer. 

CONCLUSIONS 

A finite element method of solution of two-dimensional incompressible turbulent 
flows, using a one-equation turbulence model, has been presented and has been 
shown to be successful in both the analysis of flows of the wall and of free shear 
turbulence type. Future work will concentrate on the use of the finite element method 
with more sophisticated turbulence models. 
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